Jump to ContentJump to Main Navigation
The Chemical Bond in Inorganic Chemistry$

I. David Brown

Print publication date: 2016

Print ISBN-13: 9780198742951

Published to British Academy Scholarship Online: November 2016

DOI: 10.1093/acprof:oso/9780198742951.001.0001

Show Summary Details

(p.291) References

(p.291) References

Source:
The Chemical Bond in Inorganic Chemistry
Author(s):

I. David Brown

Publisher:
Oxford University Press

Bibliography references:

Abramov, Yu., Zavodnik, V.E., Ivanov, S.A., Brown, I.D., and Tsirelson, V.G. 1995. ‘The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction analysis’. Acta Cryst. B51, pp. 942–951.

Adams, S. 2000. ‘Modelling ion conduction pathways by bond valence pseudopotential maps’. Solid State Ionics 136–137, pp. 1351–1361.

Adams, S. 2001. ‘Relationship between bond valence and bond softness of alkali halides and chalcogenides’. Acta Cryst. B57, pp. 278–287.

Adams, S. 2006a. ‘From bond valence maps to energy landscapes for mobile ions in conducting solids’. Solid State Ionics 177, pp. 1625–1630.

Adams, S. 2006b ‘Bond valence analysis of structure–property relationships in solid electrolytes’. J. Power Sources 159, pp. 200–204.

Adams, S. 2015. Listing of soft bond valence parameters. http://www.softBV.net.

Adams, S., Ehses, K-H., and Spilker, J. 1993. ‘Proton ordering in Peierls-distorted hydrogen molybdenum bronze H0.33MoO3: Structure and physical properties’. Acta Cryst. B49, pp. 958–967.

Adams, S., and Maier, J. 1998. ‘Ag migration pathways in crystalline and glassey solid electrolytes AgI, AgMxOy’. Solid State Ionics 105, pp. 67–74.

Adams, S., and Swenson, J. 2000a. ‘Determining ion conductivity from structural models’. Phys. Rev. Letters 84, pp. 4144–4147.

Adams, S., and Swenson, J. 2000b. ‘Migration pathways in Ag-based superionic glasses and crystals investigated by the bond valence method’. Phys. Rev. B 63, 054201.

Adams, S., Moretzki, O., and Canadell, E. 2004 ‘Global instability index optimization for the localization of mobile protons’. Solid State Ionics 168, pp. 281–290.

Adams, S., and Swenson, J. 2004. ‘Predictability of ion transport properties from the structure of solid electrolytes’. Ionics 10, pp. 317–326.

Adams, S., and Swenson, J. 2005. ‘Bond valence analysis of reverse Monte Carlo produced structural models; a way to understand ion conduction in glasses’. J. Phys. Condens. Mater. 17, pp. S87–S101.

Adams, S., and Rao, R.P. 2011. ‘High power lithium ion battery materials by computational design’. Phys. Status Solidi A 208, pp. 1746–1753.

Adams, S., and Rao, R.P. 2014 ‘Understanding ion conduction and energy storage materials with bond-valence-based methods’. pp. 129–160 in ‘Bond Valences’ Brown I.D., and Poeppelmeier, K.R. (Eds), Structures and Bonding p. 158, Springer, Dordrecht, Heidelberg, New York, London.

Alavi, S., and Thompson, D.L. 2003. ‘Hydrogen bonding and proton transfer in small hydroxylammonium nitrate clusters: A theoretical study’. J. Chem. Phys. 119, pp. 4274–4282.

Alcock, N.W. 1972. ‘Secondary bonding to nonmetallic elements’. Adv. Inorg. Rad. Chem. 15, pp. 1–57.

Alig, H., Lösel J., and Trömel, M. 1994. ‘Zur Kristallchemie der Wasserstoff-Sauerstoff-Bindungen’. Zeit. Kristallogr. 209, pp. 18–21.

(p.292) Allen, F.H., Bellwood, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Hicks, H. et al. 1979. ‘The Cambridge Crystallographic Data Centre: Computer-based search, retrieval, analysis and display of information’. Acta Cryst. B35, pp. 2331–2339.

Allen, L.C. 1989. ‘Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state atoms’. J. Amer. Chem. Soc. 111, pp. 9003–9014.

Allmann, R. 1975. ‘Beziehungen zwischen Bindungslängen und Bindungstärken in Oxidstrukturen’. Monatshefte Chem. 106, pp. 779–793.

Alonso, J.A., Martínez-Lope, M.J., Casais, M.T., García-Muñoz J.L., and Fernandez-Díaz, M.T. 2000. ‘Room-temperature monoclinic distortion due to charge disproportionation in RNiO3 perovskites with small rare-earth cations (R = Ho, Y, Er, Tm, Yb and Lu): a neutron diffraction study’. Phys. Rev. B. B61, pp. 1756–1763.

Altermatt, D., and Brown, I.D. 1985. ‘The automatic searching for chemical bonds in inorganic structures’. Acta Cryst. B41, pp. 240–244.

Andersson, A. 1982. ‘An oxidized surface state model of vanadium oxides and its application to catalysis’. J. Solid State Chem. 42, pp. 263–275.

Armbruster, T., Röthlisberger, F., and Seifert, F. 1990. ‘Layer topology, stacking variation, and site distortion in melilite-related compounds in the system CaO-ZnO-GeO2-SiO2’. Amer. Miner. 75, pp. 847–858.

Åsbrink, S. 1980. ‘The crystal structure of and valency distribution in the low-temperature modification of V3O5. The decisive importance of a few very weak reflections in a crystal structure determination’. Acta Cryst. B36, pp. 1332–1339.

Autschbach, J. 2012. ‘Orbital: some fiction and some facts’. J. Chem. Ed. 89, pp. 1032–1040.

Avdeev, M., Kharton, V.V., and Tsipis, E.V. 2010. ‘Geometric parameterization of the YBCaO4O7 structure type: Implications for stability of the hexagonal form and oxygen uptake’. J. Solid State Chem. 183, pp. 2506–2509.

Avdeev, M., Sale, M., Adams, S., and Rao, R.P. 2012. ‘Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method’. Solid State Ionics 225 pp. 43–46.

Bader, R.W.F. 1990. Atoms in Molecules, a Quantum Theory. Clarendon Press, Oxford.

Bagautdinov, B., Hagiya, K., Kusaka, K., Ohmasa, M., and Iishi, K. 2000. ‘Two-dimensional incommensurately modulated structure of (Sr0.13Ca0.87)2CoSi2O7 crystals’. Acta Cryst. B56, pp. 811–821.

Bargar, J.R., Brown Jr. G.E., and Parks, G.A. 1997a. ‘Surface complexation of Pb(II) at oxide water interfaces I. XAFS and bond valence determination of mononuclear and polynuclear Pb(II) sorption products on aluminum oxides’. Geochim. Cosmochim. Acta 61, pp. 2617–2637.

Bargar, J.R., Brown Jr. G.E., and Parks, G.A. 1997b. ‘Surface complexation of Pb(II) at oxide water interfaces II. XAFS and bond valence determination of mononuclear Pb(II) sorption products and surface functional groups on iron oxides’. Geochim. Cosmochim. Acta 61, pp. 2639–2652.

Bargar, J.R., Towle, S.N., Brown Jr. G.E., and Parks, G.A. 1997c. ‘XAFS and bond valence determination of the structures and compositions of surface functional groups and Pb(II) and Co(II) sorption products on single-crystal α‎-Al2O3’. J. Colloid. Interface. Sci. 185, pp. 473–492.

(p.293) Bartashevich, E.V., Nikulov, D.K., Vener, M.V., and Tsirelson, V.G. 2011. ‘QTAIMC study of the X–H/H ⋯O bond order indices (X = O, N, C) in molecular systems’. Comp. Theor. Chem. 973, pp. 33–39.

Baur, W.H. 1972. ‘Prediction of hydrogen bonds and hydrogen atom positions in crystalline solids’. Acta Cryst. B28, pp. 1457–1465.

Beevers, C.A., and Schwarz. C.M. (1935). ‘The crystal structure of nickel sulphate heptahydrate NiSO4.7H2O’. Zeit. Kristallogr. 91, 157–169.

Bell, J., Ash, D.E., Snyder, W.M., Kulathila, R., Blackburn N.J., and Merkler, D.J., 1997. ‘Structural and functional investigations on the role of zinc in bifunctional rat peptidylglycine α‎-amidating enzyme’. Biochemistry 36, pp. 16239–16244.

Belsky, A., Hellenbrandt, M., Karen, V.L., and Luksch, P. 2002. ‘New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design’. Acta Cryst. B58, pp. 364–369.

Bergerhoff, G., Hundt, R., Sievers, R., and Brown, I.D. 1983. ‘The Inorganic Crystal Structure Database’. J. Chem. Inf. Comp. Sci. 23, pp. 66–69.

Bergerhoff, G., Berndt, M., Brandenburg K., and Degen, T. 1999. ‘Concerning inorganic structure types’. Acta Cryst. B55, pp. 147–156.

Berman, H.M, Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne P.E. 2000. ‘The Protein Data Bank’. Nuc. Acid Res. 28, pp. 235–242.

Bertaut, F. 1952. ‘L’energie electrostatique des resaux ioniques’. J. Phys. Rad. 13, pp. 459–505.

Bickmore, B.R. 2014. ‘Structure and acidity in aqueous solutions and oxide–water interfaces’. pp. 191–204, in ‘Bond Valences’ Brown I.D., and Poeppelmeier, K.R. (Eds), Structures and Bonding p. 158, Springer, Dordrecht, Heidelberg, New York, London.

Bickmore, B.R., Rosso, K.M., Tadanier, C.J., Bylaska, E.J., and Doud, D. 2006. ‘Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry and solvation effects’. Geochem. Cosmochem Acta 70, pp. 4057–4071.

Bickmore, B.R., Rosso, K.M., Brown, I.D., and Kerisit, S. 2009. ‘Bond-valence constraints on liquid water structure’. J. Phys. Chem. A 113, pp. 1847–1857.

Bickmore, B.R., Wander, M.F.C., Edwards, J., Maurer, J., Shepherd, K., Meyer, E., Johansen, WJ., Frank, R.A., Andros, C., and Davis, M. 2013. ‘Electronic structure effects in the vectorial-bond-valence model’. Amer. Min. 98, pp. 340–349.

Bleam, W.F. 1993. ‘Atomic theories of phyllosilicates: Quantum chemistry, statistical mechanics, electrostatic theory and crystal chemistry’. Rev. Geophys. 31, pp. 51–73.

Blenzen, A., Foglia, F., Furet, E., Helm, L., Merbach, A.E., and Weber, J. 1997. ‘Second coordination shell water exchange rate mechanism: Experiments and modelling on hexaaquochromium(III)’. J. Amer. Chem. Soc. 118, pp. 12777–12787.

Boeyens, J.C.A. 2013. The Chemistry of Matter Waves. Springer, Dordrecht, Heidelberg, New York, London.

Born, M., and Landé, A. 1918. ‘[The absolute calculation of crystal properties with the aid of the Bohr atom model]’. Sitsungsber. Preuss. Akad. Wissen. Berlin 45, pp. 1048–1068 (in German).

Born, B., and Mayer, J.E. 1932. ‘Zur Gittertheorie der Ionenkristalle’. Zeit. Phys. 75, pp. 1–18.

Bosi, F. 2014a. ‘Mean bond-length variation in crystal structures: a bond-valence approach’. Acta Cryst. B70, pp. 607–704.

Bosi, F. 2014b. ‘Bond valence at mixed occupancy sites. I Regular polyhedra’. Acta Cryst. B70, pp. 864–870.

(p.294) Bourikas, K., Kordulis, C., and Lycourghiotis, A. 2006. ‘The mechanism of the protonation of metal (hydr)oxides in aqueous solutions studied for various interfacial/surface ionization models and physicochemical parameters: A critical review and a novel approach’. Adv. Colloid Interface Sci. 121, pp. 111–130.

Bragg, W.L. 1930. ‘The structure of silicates’. Zeit. Krist. 74, pp. 237–305.

Brammer, L., Zhao, D., Lapido, F.T., and Bradock-Wilking, J. 1995. ‘Hydrogen bonds involving transition metal centres – a brief review’. Acta Cryst. B51, pp. 632–640.

Brese, N.E., and O’Keeffe, M. 1991. ‘Bond valence parameters for solids’. Acta Cryst. B47, 192–197.

Brese, N.E., Rohrer, C.L., and Rohrer, G.S. 1999. ‘Brightness degradation in electroluminescent ZnS:Cu’. Solid State Ionics 123, pp. 19–24.

Brink, G., and Falk, M. 1970. ‘Infrared spectrum of HDO in aqueous solutions of perchlorates and tetrafluoroborates’. Can. J. Chem. 48, pp. 3019–3025.

Brock, C.P., and Dunitz, J.D. 1994. ‘Towards a grammar of crystal packing’. Chem. Mater. 6, pp. 1118–1127.

Brown, I.D. 1976a. ‘On the geometry of O–H … O bonds’. Acta Cryst. A32, pp. 24–31.

Brown, I.D. 1976b. ‘Hydrogen bonding in perchloric acid hydrates’. Acta Cryst. A32, pp. 786–792.

Brown, I.D. 1978. ‘Bond valences, a simple structural model for inorganic chemistry’. Chem. Soc. Rev. pp. 359–376.

Brown, I.D. 1980a. ‘On the prediction of angles in tetrahedral complexes and pseudo-tetrahedral complexes with stereoactive lone pairs’. J. Amer. Chem. Soc. 102, pp. 2112–2113.

Brown, I.D. 1980b. ‘A structural model for Lewis acids and bases. An analysis of the structural chemistry of the acetate and trifluoracetate ions’. J. Chem. Soc. Dalton Trans. pp. 1118–1123.

Brown, I.D. 1981. ‘The bond valence method. An empirical approach to chemical structure and bonding’, in Structure and Bonding in Crystals Vol. 2. M. O’Keeffe and A. Navrotsky (Eds), pp. 1–52. Academic Press, New York.

Brown, I.D. 1987a. ‘Structural chemistry and solvent properties of dimethylsulfoxide’. J. Solution Chem. 16, pp. 205–224.

Brown, I.D. 1987b. ‘Recent developments in the bond valence model of inorganic bonding’. Phys. Chem. Miner. 15, pp. 30–34.

Brown, I.D. 1988a. ‘What factors determine coordination numbers?’ Acta Cryst. B44, pp. 545–553.

Brown, I.D. 1988b. A chemical model of Frankel defects in fluorite’. Solid State Ionics 31, pp. 203–208.

Brown, I.D. 1991a. ‘Internal strain in perovskite related materials’, in Chemistry of Electronic Materials. P.K. Davies and R.S. Roth (Eds), pp. 471–483. US Department of Commerce, Washington.

Brown, I.D. 1991b. ‘The influence of internal strain on the charge distribution and superconducting transition temperature in Ba2YCu3Ox’. J. Solid State Chem. 90, pp. 155–167.

Brown, I.D. 1992a. ‘Modelling the structures of La2NiO4’. Zeit. Krist. 199, pp. 255–272.

Brown, I.D. 1992b. ‘Chemical and steric constraints in inorganic solids’. Acta Cryst. B48, pp. 553–572.

Brown, I.D. 1995. ‘Anion–anion repulsion, coordination numbers and the asymmetry of the hydrogen bond’. Can. J. Phys. 73, pp. 676–682.

(p.295) Brown, I.D. 1997. ‘The influence of chemical and spatial constraints on the structure of inorganic compounds’. Acta Cryst. B53, pp. 381–393.

Brown, I.D. 2000. ‘The bond valence model as a tool in teaching inorganic chemistry: the ionic model revisited’. J. Chem. Edu. 77, pp. 1070–1075.

Brown, I.D. 2002a. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, 1st edn. Oxford University Press, Oxford.

Brown, I.D. 2002b. ‘Topology and chemistry’. Structural Chemistry 12, 339–355.

Brown, I.D. 2006. ‘On measuring the size of distortions in coordination polyhedra’. Acta Cryst. B62, pp. 692–694.

Brown, I.D. 2009a. ‘Recent developments in the methods and applications of the bond valence model’. Chem. Rev. 109, pp. 6858–6919.

Brown, I.D. 2009b. ‘On the valences of bonds in the oxycomplexes of Sn2+’. Acta Cryst. B65, pp. 684–693.

Brown, I.D. 2011. ‘View of lone electron pairs and their role in structural chemistry’. J. Phys. Chem. A. 115, pp. 12638–12645.

Brown, I.D. 2014a. ‘Bond valence theory’. pp. 11–58, in Bond Valences. Brown I.D., and Poeppelmeier, K.R. (Eds), Structures and Bonding p. 158, Springer, Dordrecht, Heidelberg, New York, London.

Brown, I.D. 2014b. ‘Historical introduction’. pp. 1–10, in Bond Valences. Brown I.D., and Poeppelmeier, K.R. (Eds), Structures and Bonding p. 158, Springer, Dordrecht, Heidelberg, New York, London.

Brown, I.D. 2015. Accumulated list of bond valence parameters. Available at http://www.iucr.org/resources/data/datasets/bond-valence-parameters (accessed 10 March, 2016).

Brown, I.D., and Shannon, R.D. 1973. ‘Empirical bond-strength – bond-length curves for oxides’. Acta Cryst. A29, pp. 266–282.

Brown, I.D., Gillespie, R.J., Morgan, K.R., Tun, Z., and Ummat, P.K. 1984. ‘Preparation and crystal structure of Hg3NbF6 and Hg3TaF6: mercury layer compounds’. Inorg. Chem. 23, pp. 4506–4508.

Brown, I.D., and Altermatt, D. 1985. ‘Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database’. Acta Cryst. B41, pp. 244–247.

Brown, I.D., and Skowron A. 1990. ‘Electronegativity and Lewis acid strength’. J. Amer. Chem. Soc. 112, pp. 3401–3403.

Brown, I.D., and Duhlev, R. 1991. ‘Divalent metal halide double salts in equilibrium with their aqueous solutions II. Factors determining their crystal structures’. J. Solid State Chem. 95, pp. 51–63.

Brown Jr., G.E., Farges, F., and Calas, G. 1995. ‘X-ray scattering and X-ray spectroscopy studies of mineral melts’. Rev. Miner. 32, pp. 317–409.

Brown, I.D., Dabkowski, A., and McCleary, A. 1997. ‘The thermal expansion of chemical bonds’. Acta Cryst. B53, pp. 750–761.

Brown, I.D., Klages, P., and Skowron, A. 2003. ‘The influence of pressure on the lengths of chemical bonds’. Acta Cryst. B59, pp. 439–448.

Brown, I.D., and Poeppelmeier, K.R. (Eds) 2014. ‘Bond Valences’, in Structure and Bonding, p. 158. Springer, Dordrecht, Heidelberg, New York, London

Browning, N.D., and Pennycook, S.J. 1996. ‘Direct experimental determination of the atomic structure at internal interfaces’. J. Phys. D 29, pp. 1779–1788.

(p.296) Browning, N.D., Buban, J.P., Nellist, P.D., Norton, D.P., Chisholm, M.F., and Pennycook, S.J. 1998a. ‘The atomic origins of reduced critical currents at [001] tilt grain boundaries in YBa2Cu3O7-δ‎ thin films’. Physica C 294, pp. 183–193.

Browning, N.D., Moltaji, H.O., and Buban, J.P. 1998b. ‘Investigation of three-dimensional grain-boundary structure in oxides through multiple-scattering analysis of spatially resolved electron-energy-loss spectra’. Phys. Rev. B 58, pp. 8289–300.

Browning, N.D., Buban, J.P., Moltaji, H.O., and Duscher, G. 1999. ‘Investigating the structure-property relations at grain boundaries in MgO using bond valence pair potentials and multiple scattering analysis’. J. Amer. Ceram. Soc. 82, pp. 366–372.

Brunner, G.O., and Laves, F. 1970. ‘Zur Problem der Koordinationzahl’. Wiss. Zeit. Tech. Univ. Dresden 20, pp. 387–390.

Burdett, J.K. 1980. Molecular Shapes. Wiley-Interscience, New York.

Burdett, J.K., and Hawthorne, F.C. 1993. ‘An orbital approach to the theory of bond valence’. Amer. Miner. 78, pp. 884–892.

Burnham, C.W. 1990. ‘The ionic model. Perceptions and realities in mineralogy’. Amer. Miner. 75, pp. 443–463.

Busing, W., and Levy, H.A. 1964. ‘The effect of thermal motion on the estimation of bond lengths from diffraction measurements’. Acta Cryst. 17, pp. 142–146.

Bystrom, A., and Willhelmi, K-A. 1951. ‘The crystal structure of (NH4)2Cr2O7 with a discussion of the relation between bond number and interatomic distance’. Acta Chem. Scand. 5, pp. 1003–1010.

Cabana, J., Ling, C.D., Oró-Solé, J., Gautier, D., Tobias, G., Adams, S., Canadell, E., and Palacin, M.R. 2004. ‘Antifluorite-type lithium chromium oxide nitrides: Synthesis, structure, order, and electrochemical properties’. Inorg. Chem. 43, pp. 7050–7060.

Caminiti, R., Licheri, G., Piccaluga, G., and Pinna, G. 1978. ‘Hydration water – external water interactions around Cr3+ ions’. J. Chem. Phys. 69, pp. 1–4.

Canadell, E., and Whangbo, M-H. 1991. ‘Conceptual aspects of structure-property correlations and electronic instabilities with application to low dimensional transition-metal oxides’. Chem. Rev. 91, pp. 965–1034.

Cario, L., Lefond, A., Palvadeau, A., Deudon, P., and Meerschault, C. 1999. ‘Evidence of a mixed valence state for europium in the misfit layer compound [(EuS)1.5]1.15NbS2 by means of a superspace structural determination, Mössbauer spectroscopy and magnetic measurements’. J. Solid State Chem. 147, pp. 58–67.

Carroll, L. 1865. Alice in Wonderland. McMillan. London

Catlow, C.R.A. (Ed.) 1997. Computer Modelling in Inorganic Crystallography. Academic Press, San Diego and London.

Christy, A.G., and Mills, S.J. 2013. ‘Effect of lone-pair stereoactivity on polyhedral volume and structural flexibility: application to TeIVO6 octahedra’. Acta Cryst. B69, pp. 446–456.

Clark-Baldwin, K., Tierney, D.L., Govindaswamy, N., Gruff, E.S., Kim, C., Berg, J. et al. 1998. ‘The limitations of X-ray absorption spectroscopy for determining the structure of zinc sites in proteins. When is a tetrathiolate not a teterathiolate?’. J. Amer. Chem. Soc. 120, pp. 8401–8409.

Colombo, F., Baggio, R., and Kampf, A.R. 2011. ‘The crystal structure of the elusive huemulite’. Can. Miner. 49, pp. 849–864.

Cooper, V.R., Grinberg, I., and Rappe, A.M. 2003. ‘Extending first principles modeling with crystalchemistry: a bond-valence based classical potential’, in Fundamental Physics (p.297) of Ferroelectrics. Davies, P.K., and Singh, D.J. (Eds). American Institute of Physics, pp. 220–230.

Coulson, C.A. 1961. Valence. 2nd edn. Oxford University Press.

da Luz, M.S., Neumeier, J.J., dos Santos, C.A.M., White, B.D., Izario Filho, H.J., Leão, J.B., and Huang, Q. 2011. ‘Neutron diffraction study of quasi-one-dimensional lithium purple bronze: possible mechanism for dimensional crossover’. Phys. Rev. B 84, 014108.

Datars, W.R., Razavi, F.S., Gillespie, R.J., and Ummat, P.K. 1985. ‘Electrical properties of chain and sheet mercury compounds’. In Electrical and Magnetic Properties of Low-Dimensional Solids. Gillespie, R.J., and Day, P. (Eds). pp. 105–114, The Royal Society of London.

Deng, Jr, H., W.J., Burgner, II, J.W., and Callender, R. 1993. ‘Comparison of vibrational frequencies of critical bonds in ground-state complexes and in a vanadate-based transition-state analog complex of muscle phosphoglucomutase. Mechanistic implications’. Biochemistry 32, pp. 12984–12992.

Deng, H., Burgner II, J.W., and Callender, R.H. 1998. ‘Structure of the ribonuclease-uridine-vanadate transformation state analogue complex by Raman difference spectroscopy. Mechanistic implications’. J. Amer. Chem. Soc. 130, pp. 4717–4722.

Dent-Glasser, L. 1979. ‘Non-existent silicates’. Zeit. Krist. 149, pp. 291–325.

Desiraju, G.R., and Steiner, Th. 1999. The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press/International Union of Crystallography, Oxford.

Depero, L.E. 1993. ‘Coordination geometry and catalytic activity of vanadium on TiO2’. J. Solid State Chem. 103, pp. 528–532.

Donnay, G., and Allmann, R. 1970. ‘How to recognise O2−, OH and H2O in crystal structures determined by X-rays’. Amer. Miner. 55, pp. 1003–1015.

Dooley, M., Scott, R.A., Knowles, P.K., Colangelo, C.M., McGuirl. M.A., and Brown, D.E. 1998. ‘Structures of the Cu(I) and Cu(II) forms of amine oxidases from x-ray absorption spectroscopy’. J. Amer. Chem. Soc. 120, pp. 2599–2605.

Duhlev, R., Brown, I.D., and Balarew, Chr. 1991. ‘Divalent metal halide double salts in equilibrium with their aqueous solutions I. Factors determining their compositions’. J. Solid State Chem. 95, pp. 39–50.

Dunitz, J.D., and Orgel, L.E. 1960. ‘Stereochemistry of inorganic solids’. Adv. Inorg. Chem. Radiochem. 2, pp. 1–60.

Eby, R.K., and Hawthorne, F.C. 1993. ‘Structural relations in copper oxysalt minerals I. Structural hierarchy’. Acta Cryst. B49, pp. 28–56.

Echigo, T., and Kimata, M. 2010. ‘Crystal chemistry and genesis of organic minerals: A review of oxalate and polycyclic aromatic hydrocarbon minerals’. Canad. Miner. 48, pp. 1329–1358. DOI: 10.3749/canmin.48.5.1329.

Echols, N., Morshed, N., Afonine, P.V., McCoy, A.J., Miller, M.D., Read, R.J., Richardson, J.S., Terwilliger, T.C., and Adams, P.D. 2014. ‘Automated identification of elemental ions in macromolecular crystal structures’. Acta Cryst. D70, pp.1104–1114. Doi: 10:1107/S1399004714001308.

Efremov, V.A. 1990. ‘Characteristic features of the crystal chemistry of lanthanide molybdates and tungstates’. Russ. Chem. Rev. 59, pp. 627–642.

Enterkin, J.A., and Poeppelmeier, K.R. 2014. ‘Bonding at oxide surfaces’. pp. 205–232, in ‘Bond Valences’, Brown I.D., and Poeppelmeier, K.R. (Eds), Structures and Bonding p. 158, Springer, Dordrecht, Heidelberg, New York, London.

Evans, J.S.O. 1999. ‘Negative thermal expansions in materials’. J. Chem. Soc. Dalton Trans. pp. 3317–3326.

(p.298) Ewald, P.P. 1921. ‘Die Berechnung optischer und elektrostatische Gitterpotentiale’. Ann. Physik 64, pp. 253–287.

Extebarria, I., Pérez-Mato, J.M., Garcia, A., Blahah, P., Schwarz, K., and Rodríguez-Carvajal, J. 2005. ‘Comparison of empirical bond-valence and first-principles energy calculations for a complex structural instability’. Phys. Rev, B 72, 174108.

Ferraris, G., Khomyakov, A.P., Belluso, E., and Soboleva, S.V. 1997. ‘Polysomatic relationships in some titanosilicates occurring in the hyperagpaitic alkaline rocks of the Kola Peninsula, Russia’. Proc. 30th Internat, Geol. Congress 16, pp. 17–27.

Foley, J.A., Wright, S.E., and Hughes, J.M. 2001. ‘Cation partitioning versus temperature in spinel: optimization of site occupants’. Phys. Chem. Miner. 28, pp. 143–149.

Gagné, O.C., and Hawthorne, F.C. 2015. ‘Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen’. Acta Cryst. B71, pp. 562–578.

Galiulin, R.V., and Khurchaturov, V.R. 1994. ‘An algorithm for determining crystal structures having a given chemical formula’, in Mathematical Modelling of Composite Objects. Khatchaturov, V.R. (Ed.). Russian. Academy of Science Computer Centre, Moscow.

Gao, D., and Williams, D.E. 1999. ‘Molecular packing groups and ab initio crystal structure prediction’. Acta Cryst. A55, pp. 621–627.

García-Rodríguez, L., Rute-Pérez, A., Ramón-Piñero J., and González-Silgo, C. 2000. ‘Bond valence parameters for ammonium-anion interactions’. Acta Cryst. B56, pp. 565–569.

Garner, C.D., Collinson, D., and Pidcock, E. 1996. ‘The nature of coordination sites of transition metals in proteins’. Phil. Trans. R. Soc. Lond. A, 354, pp. 325–357.

Gatta, G.D., Bosi, F., McIntyre, G.J., and Hålenius, U. 2014. ‘Static potential disorder in uvöspinel: A single-crystal neutron diffraction study’. Amer. Min. 99, pp. 255–260.

Gibbs, G.V., Ross, N.L., Cox, D.F., and Rosso, K.M. 2014. ‘Insights into the crystal chemistry of earth materials rendered by electron density distributions: Pauling’s rules revisited’. Amer. Min. 99, pp. 1071–1084.

Gillespie, R.J., Brown, I.D., Datars, W.R., Morgan, K.R., Tun, Z., and Ummat, P.K. 1985. ‘The preparation and structure of chain and sheet mercury compounds’. pp. 115–124, in Electrical and Magnetic Properties of Low-Dimensional Solids. Gillespie, R.J., and Day, P. (Eds). The Royal Society of London.

Gillespie, R.J., and Hargittai, I. 1991. The VSEPR Model of Molecular Geometry. Prentice Hall, New York.

Gillespie, R.J., and Robinson, E.A. 1996. ‘Electron domains and the VSEPR model of molecular geometry’. Angew. Chem. Int. Ed. 35, pp. 495–514.

Gillespie, R.J., and Johnson, S.A. 1997. ‘Study of bond angles and bond lengths in disoloxane and related molecules in terms of the topology of the electron density and its Laplacian’. Inorg. Chem. 36, pp. 3031–3039.

Glazer, A.M. 1972. ‘The classification of tilted octahedra in perovskites’. Acta Cryst. B28, pp. 3384–3392.

Glusker, J.P. 1991. ‘Structural aspects of metal liganding to functional groups in proteins’. Adv. Protein Chem. 42, pp. 1–76.

Goldschmidt, V.M. 1926. ‘The laws of crystal chemistry’. Naturwiss. 14, pp. 477–485.

Gonzáles-Platas, J., Gonzáles-Silgo, C., and Ruis-Pérez, C. 1999. ‘VALMAP2-0: contour maps using the bond-valence-sum method’. J. Appl. Cryst. 32, pp. 341–344.

Gorfman, S., Schmidt, O., Tsirelson, V., Ziolkowksi, M., and Pietsch, U. 2013. ‘Crystallography under external electric field’. Z. Anorg. Allg. Chem. 639, pp. 1953–1962.

(p.299) Grabowski, J. 2011. ‘What is the covalency of hydrogen bonding?’ Chem. Rev. 111, pp. 2597–2625.

Green, R., and Vogt, T. 2012. ‘Structures and self-activating photoluminescent properties of Sr3−xAxGaO4F (A=Ba, Ca) materials’. J. Solid State Chem. 194, pp. 375–384.

Grinberg, I., Cooper, V.R., and Rappe, A.M. 2002. ‘Relationship between local structure and phase transitions of a disordered solid solution’. Nature 419, pp. 909–911.

Grinberg, I., Cooper, V.R., and Rappe, A.M. 2004. ‘Oxide chemistry and local structure of PbZrxTi1−xO3 studied by density-functional theory supercell calculations’. Phys. Rev. B 69, 144118.

Groom, C.R., and Allen, F.H. 2014. ‘The Cambridge Structural Database in retrospect and prospect’. Angew. Chem. Int. Ed. 53, pp. 662–671.

Gründermann, S., Limbach, H-H., Buntkowsky, G., Sabo-Etienne, S., and Chaudret, B. 1999. ‘Distance and scalar HH-coupling correlations in transition metal dihydrides and dihydrogen complexes’. J. Phys. Chem. A 103, pp. 4752–4754.

Grushow, A. 2011. ‘Is it time to retire the hybrid atomic orbital?’ J. Chem. Ed. 88, pp. 860–862.

Harris, S.E., Orpen, A.G., Bruno, I.J., and Taylor, R. 2005. ‘Factors affecting d-block metal—ligand bond lengths: Toward an automated library of molecular geometry for metal complexes’. J. Chem. Inf. Model 45, pp. 1727–1748.

Harvey, M.A., Baggio, S., and Baggio, R. 2006. ‘A new simplifying approach to molecular geometry description: the vectorial bond-valence model’. Acta Cryst. B62, pp. 1038–1042.

Hati, S., and Datta, D. 1995. ‘Nature of the active sites in haemocyanin and iron-rich hydgrogenases: the bond valence sum approach’. J. Chem. Soc. Dalton Trans. pp. 1177–1182.

Hawthorne, F.C. 1985. ‘Towards a structural classification of minerals: the VIMIVT2Φ‎n minerals’. Amer. Miner. 70, pp. 455–473.

Hawthorne, F.C. 1992a. ‘The role of OH and H2O in oxides and oxysalt minerals’. Zeit. Krist. 201, pp. 183–206.

Hawthorne, F.C. 1992b. ‘Bond topology, bond valence and structural stability’, in The Stability of Minerals. Price, G.D., and Ross, N.L. (Eds), pp. 25–87. Chapman and Hall, London.

Hawthorne, F.C. 1997. ‘Short range order in amphiboles. A bond valence approach’. Can. Miner. 35, pp. 201–216.

Hawthorne, F.C. 1998. ‘Structure and chemistry of phosphate minerals’. Miner. Mag. 62, pp. 141–164.

Hawthorne, F.C. 2015. ‘Toward theoretical mineralogy: A topological approach’. Amer. Min. 100, pp. 696–713.

Hawthorne, F.C., Della Ventura, G., Oberti, R., Robert, J.-L., Iezzi, G. 2005. ‘Short range order in minerals: Amphiboles’. Can. Mineral. 43, pp. 1895–1920.

Hawthorne, F.C., and Schindler, M. 2008. ‘Understanding the weakly bonded constituents in oxysalt minerals’. Zeit. Krist. 223, pp. 41–68.

Hawthorne, F.C., and Schindler, M. 2014. ‘Crystallization and dissolution in aqueous solution: a bond valence approach’. pp. 161–190, in ‘Bond Valences’ Brown I.D., and Poeppelmeier, K.R. (Eds), Structures and Bonding, p. 158, Springer, Dordrecht, Heidelberg, New York, London.

Hazen, R.M., and Finger, L.W. 1982. Comparative Crystal Chemistry. Temperature Pressure Composition and the Variation of Crystal Structure. Wiley, New York.

(p.300) Hiemstra, T., Venema, P., and Riemsdijk, W.H. 1996. ‘Intrinsic proton affinity of teactive surface groups of metal (hydr)oxides: The bond valence principle’. J. Colloid Interface Sci. 184, pp. 680–692.

Hirschfeld, F.L., and Rzotkiewicz, S. 1974. ‘Electrostatic binding in the first-row AH and A2 diatomic molecules’. Mol. Phys. 27, pp. 1319–1343.

Hoppe, R., and Köhler, J. 1988. ‘Schlegel projections and Schlegel diagrams – new ways to describe and discuss solid state compounds’. Zeit. Krist. 183, pp. 77–111.

Hughes, J.M., Bloodaxe, E.S., Hanchar, J.M., and Foord, E.E. 1997. ‘Incorporation of rare earth elements in titanate: stabilization of the A2/a dimorph by creation of antiphase boundaries’. Amer. Miner. 82, pp. 512–516.

Hunter, B.A., Howard, C.J., and Kim, D.J. 1999. ‘Bond valence analysis of tetragonal zirconias’. J. Solid State Chem. 146, pp. 363–368.

International Tables for Crystallography, Vol. A, 1996. 4th Edn. D. Reidel Publishing Co., Dordrecht.

Jansen, J., and Block, R. 1991. ‘On the concept of “bond valence sums” and its applicability in the analysis of high-Tc superconductors’. Physica C 181, pp. 149–159.

Jansen, L., Chandra, L., and Block, R. 1992. ‘On the concept of “bond valence sums” and its applicability in solid state chemistry and physics’. J. Mol. Struct. (Theochem) 260, pp. 81–96.

Janssen, Y., Middlemiss, D.S., Bo, S.H., Grey, C.P., and Khalifah, P.G. 2012. ‘Structure modulation in the high capacity battery cathode material LiFeBO3’. J. Am. Chem. Soc. 134, pp. 12516–12527. dx.doi.org/10.1021/ja301881c

Johnson, D.A. 1968. Some Thermodynamic Aspects of Inorganic Chemistry. Cambridge University Press, Cambridge.

Karpppinen, M., and Yamauchi, H. 1999. ‘The doping routes and distribution of holes in layered cuprates: a novel bond valence approach’. Phil. Mag. 79, pp. 343–366.

Klein, O., Bonvehi, M.M., Aguilar-Parrilla, F., Jagerovic, H., Elguero, J., and Limbach, H-H. 1999. ‘Hydrogen bond compression during triple proton transfer in crystalline pyrazoles. a dynamic 15N NMR study’. Israel J. Chem. 39, pp. 291–299.

Koller, H., Englehardt, G., Kentgens, A.P.M., and Saur, J. 1994. ‘23Na NMR spectroscopy of solids: interpretation of quadrupole interaction parameters and chemical shifts’. J. Phys. Chem. 98, pp. 1544–1551.

Koretsky, E.M., Sverjensky, D.A., and Sahai, N. 1998. ‘A model of surface site types on oxide and silicate minerals based on crystal chemistry – implications for site types and densities, multisite adsorption, surface infrared-spectroscopy, and dissolution kinetics’. Amer. J. Sci. 298, pp. 349–438.

Krivovichev, S.V. 2012. ‘Derivation of bond-valence parameters for some cation–oxygen pairs on the basis of empirical relationships between r0 and b’. Zeit. Krist. 227, pp. 575–579.

Krivovichev. S.V., and Filatov, S.K., 1999. ‘Structural principles for minerals and inorganic compounds containing anion-centred tetrahedra’. Amer. Min. 84, pp. 1099–1106.

Krivovichev, S.V., and Brown, I.D. 2001. ‘Are compressive effects of encapsulation an artifact of the bond valence parameters?’ Zeit. Krist. 216, pp. 245–247.

Kroll, H., Maurer, H., Stöckelmann, D., Becker, W., Fulst, J., Krüsemann, R. et al. 1992. ‘Simulation of crystal structures by a combined distance-least-squares valence-rule method’. Zeit. Kristallogr. 199, pp. 49–66.

(p.301) Kroon, J., Kanters, J.A., Van Duijneveldt-Van de Rijdt, J.G.C.M., Van Duijneveldt, F.S., and Vliegenthart, J.A. 1975. ‘O–HH …H O hydrogen bonds in molecular crystals. A statistical and quantum-chemical analysis’. J. Mol. Structure 24, pp. 109–129.

Kubayashi, K., Kawata, H., and Mori, K. 1998. ‘Site specification on normal and magnetic XANES of ferrimagnetic Fe3O4 by means of resonant magnetic Bragg scattering’. J. Synch. Rad. 5, pp. 972–974.

Kumar, A., Gadre, S.R., Mohan, N., and Suresh, C.H. 2014. ‘Lone pairs: an electrostatic viewpoint’. J. Phys. Chem. A. 118, pp. 526–532.

Kunz, M., and Brown, I.D. 1995. ‘Out-of-center distortions around octahedrally coordinated d0-transition metals’. J. Solid State Chem. 115, pp. 395–406.

Labouriau, A., Higley, T.J., and Earl, W.L. 1998. ‘Chemical shift prediction in the Si-29 MAS NMR of titanosilicates’. J. Phys. Chem. B102, pp. 2897–2904.

Lalik, E. 2005 ‘Shannon information as a measure of distortion in coordination polyhedra’. J. Appl. Crystallogr. 38, pp. 152–157.

Launay, M., Boucher, F., Gressier, P., and Ouvrard, G. 2003. ‘DFT study of lithium battery materials: application to the beta-VOXO4 systems (X = P, As, S)’. J. Solid State Chem. 176, pp. 556–566.

Lee, J.-S., Lee, P.-L., and Yu, S.-C. 1995. ‘Structural of the analysis flux grown emerald crystals’. J. Geol. Soc. 38, pp. 273–286.

Leonyuk, L., Babonas, G-J., Maltsev, V., and Ribakov. V. 1999. ‘Polysomatic series in the structures of complex cuprates’. Acta Cryst. A55, pp. 628–634.

Lewis, G.N. 1923. Valence and the Structure of Atoms and Molecules. The Chemical Catalogue Company Inc., New York.

Liebau, F. 1985. Structural Chemistry of Silicates. Structure, Bonding and Classification. Springer, Berlin.

Lima de Faria, J., and Figueiredo, M.O. 1975. ‘Classification, notation and ordering on a table of inorganic structure types’. J. Solid State Chem. 16, pp. 7–28.

Liu, S., Grinberg, I., Takenaka, H., and Rappe, A.M. 2013a. ‘Reinterpretation of the bond-valence model with bond-order formalism: An improved bond-valence-based interatomic potential for PbTiO3’. Phys. Rev. B 88, 104102.

Liu, S., Grinberg, I., and Rappe, A.M. 2013b. ‘Development of a bond-valence based interatomic potential for BiFeO3 for accurate molecular dynamics simulations’. J. Phys.: Condens. Matter 25, 102202.

Liu, S., Grinberg, I., and Rappe, A.M. 2013c. ‘Exploration of the intrinsic inertial response of ferroelectric domain walls via molecular dynamics simulations’. Applied Physics Letters 103, 232907.

Liu, J., Chang, D., Whitfield, P., Janssen, Y., Yu, X., Zhou, Y., Bai, J., Ko, J., Nam, K-W., Wu, L., Zhu, Y., Feygenson, M., Amatucci, G., Van der Ven, A., Yang, X-Q., and Khalifah, P. 2014. ‘Ionic conduction in cubic Na3TiP3O9N, a secondary Na-ion battery cathode with extremely low volume change’. Chem. Mater. 26, pp. 3295−3305. dx.doi.org/10.1021/cm5011218.

Lock, C.J.L. 1980. ‘Structural studies of the hydrolysis products of platinum anticancer drugs, and their complexes with DNA base’. ACS Symposium Series, 140: Inorganic Chemistry in Biology and Medicine. Martell, A.E. (Ed.), pp. 209–24.

Lu, H., Isralewitz, B., Kramer, A., Vogel, V., and Schulten, K. 1998. ‘Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation’. Biophysical J. 75, pp. 662–671.

(p.302) Luaña, V., Costales, A., and Pendás, A.M. 1997. ‘Ions in crystals: The topology of the electron density in ionic materials II. The cubic halide perovskites’. Phys. Rev. B 55, pp. 4285–4297.

Lufaso, M.W. 2004. ‘Crystal structure, modeling, and dielectric property relationships of 2:1 ordered Ba3MM2O9 (M=Mg,Ni,Zn; M’=Nb, Ta) perovskites’. Chem Mater. 16, pp. 2148–2156.

Lufaso, M.W., and Woodward, P.M. 2001. ‘Prediction of the crystal structures of perovskites using the software program SPuDS’. Acta Cryst. B57, pp. 725–738.

Lufaso, M.W., Barnes, P.W., and Woodward, P.M. 2006. ‘Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS’. Acta Cryst. B62, pp. 397–410.

Lufaso, M.W., and Woodward, P.M. 2014. ‘Using bond valences to model the structures of ternary and quaternary oxides’, pp. 59–90, in ‘Bond Valences’ I.D. Brown and K.R. Poeppelmeier (Eds), Structure and Bonding, p. 158, Springer, Dordrecht, Heidelberg, New York, London.

Madelung, E. 1918. ‘Das elektrische Feld in Systemen von regelmässig angeordneten’. Physik. Zeit. 19, pp. 524–532.

Mahapatra, S. Halten, J.A., Wilkinson, E.C., Pan, G., Wang, X., Young Jr, V.G., et al. 1996. ‘Structural, spectroscopic and theoretical characterization of bis(μ‎-oxo)dicopper complexes, novel intermediates in copper mediated dioxygen activation’. J. Amer. Chem. Soc. 118, pp. 11558–11570.

Manceau, A., and Gates, W.P. 1997. ‘Surface structural model for ferrihydrite’. Clay and Clay Miner. 45, pp. 448–460.

Manceau, A., Chateigner, D., and Gates, W.P. 1998. ‘Polarised EXAFS distance least squares valence modelling (DVLS) and quantitative texture analysis approaches to the structural refinement of Garfield nontronite’. Phys. Chem. Miner. 25, pp. 347–365.

Mata, I., Molins, E., Alkorta, I., and Espinosa, E. 2011. ‘Tuning the interaction energy of hydrogen bonds: the effects of the substituent’. J. Phys. Chem. A 115, pp. 12561–12571.

McGibbon, M.M., Browning, N.D., Chisholm, M.F., McGibbon, A.J., Pennycook, S.J., Ravikumar, V. et al. 1994. ‘Direct determination of the grain boundary atomic structure in SrTiO’. Science 266, pp. 102–104.

McGibbon, M.M., Browning, N.D., McGibbon, A.J., and Pennycook, S.J., 1996. ‘The atomic structure of asymmetric [001] tilt boundaries in SrTiO3’. Phil. Mag. A73, pp. 625–641.

McGreevy, R.L. 1997. ‘Reverse Monte Carlo methods for structure modelling’, in Computer Modelling in Inorganic Crystallography. C.R.A. Catlow (Ed.), pp. 151–184. Academic Press, San Diego and New York.

Megaw, H.D. 1939. ‘The thermal expansion of crystals in relation to their structure’. Zeit. Krist. 100, pp. 58–76.

Meier, W.M., and Olson, D.H. 1992. Atlas of Zeolite Structure Types, 3rd edn. Butterworths, London.

Mitchell, K.A.R., Schlatter, S.A., and Sodhi, R.N.S. 1986. ‘Further analysis of surface bond lengths measured for chemisorption on metal surfaces’. Can. J. Chem. 64, pp. 1435–1439.

Mohri, F. 2000. ‘A new relation between bond valence and bond distance’. Acta Cryst. B56, pp. 626–638.

Mohri, F. 2003. ‘Molecular orbital study of the bond-valence sum rule using Lewis-electron pair theory’. Acta Cryst. B59, pp. 190–208.

(p.303) Mohri, F. 2005. ‘Molecular orbital study of bond-valence sum rule for hydrogen bond systems using Lewis-electron pair theory’. THEOCHEM 756, pp. 25–33.

Mohri, F. 2006. ‘A molecular orbital explanation of bond distance variation caused by hydrogen bond formation’. THEOCHEM 770, pp. 179–184.

Müller, P., Köpke, S., and Sheldrick, G.M. 2003. ‘Is the bond-valence method able to identify metal atoms in protein structures?’ Acta Cryst. D59, pp. 32–37.

Mullins, J.J. 2012. ‘Hyperconjugation: a more coherent approach’. J. Chem. Ed. 89, pp. 834–836.

Murray-Rust, P., Bürgi, H-B., and Dunitz, J.D. 1975. ‘Chemical reaction paths. V. The SN1 reaction of tetrahedral molecules’. J. Amer. Chem. Soc. 97, pp. 921–923.

Naskar, J.P., Hati, S., and Datta, D. 1997. ‘New bond valence model’. Acta Cryst. B53, pp. 885–894.

Nayal, M., and Di Cera, E. 1994. ‘Predicting Ca2+-binding sites in proteins’. Proc. Natl Acad. Sci. USA 91, pp. 817–821.

Nayal, M., and Di Cera, E. 1996. ‘Valence screening of water in protein crystals reveals potential Na+ binding sites’. J. Mol. Biol. 256, pp. 228–234.

Newville, M. 2005. ‘Using bond valence sums as restraints in XAFS analysis’. Phys. Scr. T115, pp. 159–161.

Niggli, P. 1918. Geometrische Kristallographie des Diskontinuums. Gebr. Bornträger, Leipzig.

Norberg, S.T., Tucker, M.G., and Hull, S. 2009. ‘Bond valence sum: a new soft chemical constraint for RMCProfile’. J. Appl. Cryst. 42, pp. 179–184.

O’Keeffe, M. 1989. ‘The prediction and interpretation of bond lengths in crystals’. Structure and Bonding 71, pp. 161–190.

O’Keeffe, M. 1991a. ‘Empirical methods in oxide crystal chemistry’, in Chemistry of Electronic Ceramic Materials, Davies, P.K., and Roth, R.S. (Eds), pp. 485–498, US Department of Commerce.

O’Keeffe, M. 1991b. ‘Application of the bond valence method to Si/NiSi2 interfaces’. J. Mater. Res. 6, pp. 2371–2374.

O’Keeffe, M., and Hyde, B.G. 1982. ‘Anion coordination and cation packing in oxides’. J. Solid State Chem. 44, pp. 24–31.

O’Keeffe, M., and Hyde, B.G. 1984. ‘Stoichiometry and the structure and stability of inorganic solids’. Nature 309, pp. 411–414.

O’Keeffe, M., and Hyde, B.G. 1985. ‘An alternative approach to non-molecular crystal structures with emphasis on the arrangement of cations’. Structure and Bonding 61, pp. 77–144.

O’Keeffe, M., Eddaoudi, M., Li, H., Reinecke, T., and Yaghi, O.M. 2000. ‘Frameworks for extended solids: geometric design principles’. J. Solid State Chem. 152, pp. 3–20.

Otero-Diaz, L.C., Landa, A.R., Fernandez, F., Saez-Puche, R., Withers, R., and Hyde B.G. 1992. ‘A TEM study of the ordering of excess interstitial oxygen atoms in Ln2NiO4+δ‎ (Ln = La, Nd)’. J. Solid State Chem. 97, pp. 443–451.

Palenik, G.J. 1997. ‘Bond valence sums in coordination chemistry using oxidation state independent Ro values. A simple calculation of the oxidation states of titanium in compounds containing Ti–N, Ti–O, and Ti–Cl bonds’. Inorg. Chem. 36, pp. 3394–3397.

Pannetier, J., Bassas-Alsina, J., Rodrigues-Carvajal, J., and Caignaert, V. 1990. ‘Prediction of crystal structures from crystal chemistry rules by simulated annealing’. Nature 346, pp. 343–345.

Parthé, E. 1996. Elements of Inorganic Structureal Chemistry. Selected Efforts to Predict Structural Feature. K. Sutter-Parthé, Petit-Lancy, Switzerland.

Partington, J.R. 1964. A History of Chemistry. Vol 4, McMillan Press Ltd. London.

(p.304) Pauling, L. 1929. ‘The principles determining the structure of complex ionic crystals’. J. Amer. Chem. Soc. 51, pp. 1010–1026.

Pauling, L. 1947. ‘Atomic radii and interatomic distances in metals’. J. Amer. Chem. Soc. 69, pp. 542–554.

Pauling L. 1960. The Nature of the Chemical Bond. 3rd edn, Cornell University Press, Ithaca.

Payne, M.C., Teter, M.P., Allen, D.C., Arias, T.A., and Joanopolus, J.D. 1992. ‘Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and conjugate gradients’. Rev. Mod. Phys. 64, pp. 1045–1097.

Pearson, R.G. 1973. Hard and Soft Acids and Bases. Dowden, Hutchinson and Ross, Stroudberg, PA USA.

Pendás, A.M., Costales, A., and Luaña, V. 1997. ‘Ions in crystals: The topology of electron density in ionic materials. I. Fundamentals’. Phys. Rev. B 55, pp. 4275–4284.

Pendás, A.M., Costales, A., and Luaña, V. 1998. ‘Ions in crystals: The topology of electron density in ionic materials. III. Geometry and ionic radii’. J. Phys. Chem. B 102, pp. 6937–6948.

Plenio, H. 1998. ‘The coordination chemistry of CF units in fluorocarbons’. Chem. Rev. 97, pp. 3363–3384.

Plenio, H., and Hermann, J. 1998. ‘Synthesis and x-ray crystal structures of 48-membered fluoromacorcycles and an investigation of their coordination chemistry’. Zeit. Anorg. Allgem. Chem. 624, pp. 792–796.

Preiser, C., Lösel, J., Brown, I.D., Kunz, M., and Skowron, A. 1999. ‘Long range Coulomb forces and localised bonds’. Acta Cryst. B55, pp. 698–711.

Prencipe, M. 2002. ‘Ab initio Hartree–Fock study and charge density analysis of beryl (Al4Be6Si12O36)’. Phys. Chem. Miner. 29, pp. 552–561.

Purser, G.H. 1999. ‘Lewis structures are models for predicting molecular structure, not electronic structure’. J. Chem. Ed. 76, pp. 1013–1018.

Rao, G.H., and Brown I.D. 1998. ‘Determination of bonding and valence distribution in inorganic solids by the maximum entropy method’. Acta Cryst. B54, pp. 221–230.

Rao, G.H., Brown, I.D., and Bärner, E. 1999. ‘Structural effects in R0.5Sr0.5MnO3 perovskites (R = rare earth)’. J. Phys.: Condens. Matter 11, pp. 8103–8109.

Rao, V.K., Barathi, K., Prabhu, R., Chandra, M., and Natarajan, S. 2010. ‘Two- and three-dimensional open-framework uranium arsenates: synthesis, structure and characterization’. Inorg. Chem. 49, pp. 2931–2947. DOI: 10.1021/ic9002472h

Ray Jr, W.J., Burgner II, J.W., Deng, H., and Callender, R. 1993. ‘Internal chemical bonding in solutions of simple phosphates and vanadates’. Biochemistry 32, pp. 12977–12983.

Rohrer, C.L., and Rohrer, G.S. 1994. ‘Monte Carlo simulations of Mg(Al)O solid solutions based on crystal chemical rules’. Chem. Mater. 6, pp. 501–507.

Rosenfield, R.E., Trueblood, K.N., and Dunitz, J.D. 1978. ‘A test for rigid–body vibrations based on a generalization of Hirschfeld’s ‘rigid–bond’ postulate’. Acta Cryst. A34, pp. 828–829.

Rossano, S., Farges, F., Ramos, A., Delaye, J.-M., and Brown Jr. G.E. 2002. ‘Bond valence in silicate glasses’. J. Non-Cryst. Solids 304. pp. 167–173.

Rutherford, J.D. 1998. ‘Theoretical prediction of bond valence networks II. Comparison of the graph matrix and resonant bond approach’. Acta Cryst. B54, pp. 214–220.

Sale, M., and Avdeev, M. 2012. ‘3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes’. J. App. Cryst. 45, pp. 1054–1056.

(p.305) Salinas-Sanchez, A., Garcia-Muñoz, J.L., Rodriguéz-Carvajal, J. Saez-Puche, R., and Martinez, J.L. 1992. ‘Structural characterization of R2BaCuO5 (R = Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Eu and Sm) oxides by x-ray and neutron diffraction’. J. Solid State Chem. 100, pp. 201–211.

Sanderson, R.T. 1983. Polar Covalence, Academic Press Inc., New York.

Santoro, A., Soro, I.N., and Huang, G. 1999. ‘Bond valence analysis of the structure of (Ba0875Sr0.125)Ru O3’. J. Solid State Chem. 143, pp. 69–73.

Santoro, A., Soro, I.N., and Huang, G. 2000. ‘Bond valence analysis of BaRuO3’. J. Solid State Chem. 151, pp. 245–252.

Sato, M. 1982. ‘[Computer simulation of crystal structures]’. Rikagi Denki J. 13, pp. 48–52 (in Japanese).

Sato, M., and Uehara, H. 1997. ‘Ab initio computer modelling of zeolite frameworks I. Modelling the basic clusters’. Prog. Zeolite Microporous Mater. 105, pp. 2299–2306.

Scarrow, R.C., Brennan, B.A., Cummings, J.G., Jia, H., Duong, D.J., Kindt, J.T., et al. 1996. ‘X-ray spectroscopy of nitrile hydratase at pH7 and pH9’. Biochem. 55, pp. 10078–10088.

Schindler, M., Hawthorne, F.C., and Baur, W.H. 2000. ‘Crystal chemical aspects of vanadium polyhedral geometries, characteristic bond valences, and polymerization of (VOn) polyhedra’. Chem. Mater. 12, pp. 1248–1259.

Schmidt, H., Hennings, E., and Voigt, W. 2014. ‘Crystal structures of hydrates of simple inorganic salts. III. Water-rich aluminium halide hydrates: AlCl3.15H2O, AlBr3.15H2O, AlI3.15H2O, AlI3.17H2O and AlBr3.9H2O’. Acta Cryst. C70, pp. 882–888.

See, R.F., Kruse, R.A., and Strub, W.M. 1998. ‘Metal-ligand bond distances in first-row transition metal coordination compounds: coordination number oxidation state and specific ligand effects’. Inorg. Chem. 37, pp. 5369–5375.

See, R.F., and Kozina, D. 2013. ‘Quantification of the trans influence in d8 square planar and d6 octahedral complexes: a database study’. J. Coord. Chem. 66, pp. 490–500.

Shannon, R.D. 1976. ‘Revised effective radii and systematic studies of interatomic distances in halides and chalcogenides’. Acta Cryst. A32, pp. 751–767.

Shannon, R.D., Chenavas, J., and Joubert, J.C. 1975. ‘Bond strength considerations applied to cation coordination in normal and high pressure oxides’. J. Solid State Chem. 12, pp. 16–30.

Shannon, E.C., and Weaver, W. 1963. The Mathematical Theory of Communication, University of Illinois Press, Urbana.

Shannon, R.D., and Prewitt, C.T. 1969. ‘Effective ionic radii in oxides and fluorides’. Acta Cryst. B25, pp. 925–946.

Sherriff, B.L., and Grundy, H.D. 1988. ‘Calculation of 29Si MAS NMR chemical shift from silicate mineral structure’. Nature 332, pp. 819–822.

Shield, G.P., Raithby, P.R., Allen, F.A., and Motherwell, W.D.S. 2000. ‘The assignment and validation of metal oxidation states in the Cambridge Structural Database’. Acta Cryst. B56, pp. 455–465.

Shin, Y.-H, Cooper, V.R., Grinberg, I., and Rappe, A.M. 2005. ‘Development of a bond-valence molecular-dynamics model for complex oxides’. Phys Rev. B 71, 054104.

Shin, Y.-H., Grinberg, I., Chen, I-W., Rappe, A.M. 2007. ‘Nucleation and growth mechanism of ferroelectric domain-wall motion’. Nature 449, pp. 881–886.

Shin, Y-H., Son, J-Y., Lee, B-J., Grinberg, I., and Rappe, A.M. 2008. ‘Order–disorder character of PbTiO3’. J. Phys. Condens. Mater. 20, 015224.

(p.306) Shin, J., Ahn, N.H., Cho, S.J., Ren, L., Xiao, F-S., and Hong, S.B. 2014. ‘Framework Al zoning in zeolite ECR-1’. Chem. Commun. 50, pp. 1956–1958.

Shubnikov, A.V. 1922. ‘[Fundamental law of crystal chemistry]’. Izv. Ross. Akad. Nauk 16, pp. 515–527 (in Russian). A more accessible account of Shubnikov’s law is given by Smirnova and Urusov (1988).

Shui, X.Q., Sines, C.C., McFailisom, L., Van der Veer, D., and Williams, L.D. 1998. ‘Structure of the potassium form of CGCGAATTCGCG-DNA deformation by electrostatic collapse around inorganic cations’. Biochemistry 37, pp. 16877–16887.

Sidey, V. 2009. ‘On the correlations between the polyhedron eccentricity parameters and the bond-valence sums for the cations with lone electron pair. Addendum’. Acta Cryst. B65, pp. 401–402.

Sidey, V. 2011. ‘A simplified empirical model for approximation of the ‘bond valence-bond length’ correlation for H–O bonds’. Acta Cryst. B67, pp. 263–265.

Sidey, V. 2012. ‘Exact solution of the bond-valence sum rule for a set of coordination shells’. Acta Cryst. B68, pp. 318–320.

Sidey, V. 2014. ‘Universal “bond valence versus bond length” correlation curve for manganese–oxygen bonds’. Acta Cryst. B70, pp. 608–611.

Sidey, V. 2015. ‘An altenative empirical model for the relationship between the bond valence and the thermal expansion rate of chemical bonds’. Acta Cryst. B71, pp. 484–487.

Skibsted, J., Vosegaard, T., Bildsøe, H., and Jakobsen, H.J. 1996. ‘133Cs chemical shielding anisotropies and quadrupole coupling constants from magic angle spinning NMR of cesium salts’. J. Phys. Chem. 100, pp. 14872–14881.

Skibsted, J., Jacobsen, C.J.H., and Jakobsen, H.J. 1998. ‘51V chemical shielding and quadrupolar coupling in ortho- and metavanadates from 51V MAS NMR spectroscopy’. Inorg. Chem. 37, pp. 3083–3092.

Skowron, A., and Brown, I.D. 1990. ‘Refinement of the structure of robinsonite, Pb4Sb6S13’. Acta Cryst. C46, pp. 527–531.

Skowron, A., and Brown, I.D. 1994. ‘Crystal chemistry and structures of lead antimony sulfides’. Acta Cryst. B50, pp. 524–538.

Smirnova, N.V., and Urusov, V.S. 1988. ‘Fundamental law of crystal chemistry by Shubnikov, its applications and restrictions’. Comput. Math. Applic. 16, pp. 563–567.

Smith, J.V. 1988. ‘Topochemistry of zeolites and related materials’. Chem. Rev. 88, pp. 149–182.

Steiner, Th. 1995a. ‘Lengthening of the N–H bond in N–H … N hydrogen bonds. Preliminary structural data and implications of the bond valence concept’. Chem. Comm. pp. 1331–1332.

Steiner, Th. 1995b. ‘Weak hydrogen bonding Part I. Neutron diffraction data of amino acid C–H suggests lengthening of the covalent C–H bond in C–HH …H O interactions’. J. Chem. Soc. Perkins Trans. II pp. 1315–1319.

Steiner, Th. 1997. ‘Unrolling the hydrogen bond properties of C–H … O interactions’. Chem. Comm. pp. 727–34.

Steiner, Th. 1998a. ‘Structural evidence for resonance-assisted O–H … S hydrogen bonding’. Chem. Comm. pp. 411–412.

Steiner, Th. 1998b. ‘Lengthening of the covalent X–H bond in heteronuclear hydrogen bonds quantified from organic and organometallic neutron crystal structures’. J. Phys. Chem. A 102, pp. 7041–7052.

(p.307) Steiner, Th., and Saenger, W. 1992. ‘Covalent bond lengthening in hydroxyl groups involved in three-center and in cooperative hydrogen bonds. Analysis of low-temperature neutron diffraction data’. J. Amer. Chem. Soc. 114, pp. 7123–7126.

Steiner, Th., and Saenger, W. 1994. ‘Lengthening of the covalent O–H bond in the O–H … O hydrogen bonds re-examined from low-temperature neutron diffraction data of organic compounds’. Acta Cryst. B50, pp. 348–357.

Sullivan, E., Avdeev, M., and Vogt, T. 2012. ‘Structure distortions in Sr3−xAxMO4F (A=Ca, Ba; M=Al, Ga, In) in anti-perovskites and corresponding changes in photoluminescence’. J. Solid State Chem. 194, pp. 297–306.

Swenson, J., and Adams, S. 2001. ‘The application of the bond valence method to reverse Monte Carlo produced structural models of superionic glasses’. Phys. Rev. B 64, 024204.

Tallon, J.T. 1990. ‘The relationship between bond valence sums and Tc in cuprate superconductors’. Physica C 168, pp. 85–90.

Tanaka, S., Fukushima, N., Niu, H., and Ando, K. 1990. ‘Bond-valence-sum study on possible candidates for High-Tc oxide superconductors’. Jap. J. Appl. Phys. 29, pp. L1987–1990.

Taylor, R., and Kennard, O. 1984. ‘Hydrogen bond geometry in organic crystals’. Acc. Chem. Res. 17, pp. 320–326.

Thomas, N.W. 1989. ‘A bond-valence approach to one-dimensional ferroelectrics’. Ferroelectrics 100, pp. 77–100.

Thompson, T. 1807. A System of Chemistry. Vol. 3, 3rd edn, pp. 424–429. Edinburgh.

Thompson, J.G., Rae, A.D., Bliznyuk, N., and Withers, R.L. 1999. ‘Ordering of CeIII/CeIV and interstitial oxygens in CeTaO4+x (x = 0.17) superstructures’. J. Solid State Chem. 144, pp. 240–246.

Thorp, H.H. 1992. ‘Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes’. Inorg. Chem. 31, pp. 1585–1588.

Thorp, H.H. 1998. ‘Bond valence sum analysis of metalloenzymes. 3. Prediction bond lengths in adjacent redox states using inner-sphere reorganizational energies’. Inorg. Chem. 37, pp. 5690–5692.

Trömel, M. 1992. ‘Zu einer Bindungslänger Kristallchemie’. Zeit. Krist. 200, pp. 177–187.

Tro, N.J. 2012. ‘Retire the hybrid atomic orbital? Not so fast’. J. Chem. Ed. 89, pp. 567–568.

Turrell, G. 1972. Infrared and Raman Spectra of Crystals. Academic Press, London and New York.

Urusov, V.S. 1995. ‘Semiempirical groundwork of the bond valence model’. Acta Cryst. B51, pp. 641–649.

Urusov, V.S. 2003. ‘Theoretical analysis and empirical manifestation of the distortion theorem’. Zeit. Krist. 218, pp. 709–719.

Urusov, V.S., and Orlov, I.P. 1999. ‘State-of-art and perspectives of the bond-valence model in inorganic chemistry’. Crystallogr. Rep. 44, pp. 686–709.

Valach, F. 1999. ‘A bond valence approach to the semicoordination of copper-oxygen and copper-nitrogen complexes’. Polyhedron 116, pp. 699–706.

van Smaalen, S., and Lüdecke, J. 2000. ‘The valence states of vanadium in the low-temperature superstructure of NaV2O5’. Europhys. Lett. 49, pp. 250–254.

van Smaalen, S., Dinnebier, R., Sofin, M., and Jansen, M. 2007. ‘Structures of incommensurate and commensurate composite crystals NaxCuO2 (x = 1.58, 1.6, 1.62)’. Acta Cryst. B63, pp. 17–25.

(p.308) Venema, P., Hiemstra, T., Weidler, P.G., and Van Riemsdijk, W.H. 1998. ‘Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: application to iron (hydr)oxides’. J. Colloid. Interface Sci. 198, pp. 282–295.

Villiger, H. 1969. DLS Manual. Inst. Kristallogr. Petrolog. ETH, Zürich.

Wakiya, N., Shinozaki, K., Mizutani, N., and Ishizawa, N. 1997. ‘Estimation of phase stability in Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3 using the bond valence approach’. J. Amer. Ceram. Soc. 80, pp. 3217–3220.

Waltersson, K. 1978. ‘A method based upon `bond strength’ calculations for finding probable lithium sites in crystal structures’. Acta Cryst. A34, pp. 901–905.

Wang, Y.M., Li, Y.S., and Mitchell, K.A.R. 1997. ‘LEED crystallographic analysis for the structure formed by 2 ML of O at the Zr (0001) surface’. Surface Sci. 380, pp. 540–547.

Wells, A.F. 1975. Structural Inorganic Chemistry, 4th edn, pp. 119–155. Clarendon Press, Oxford.

Whitfield, R.E., Welberry, T.R., Pasćiaka, M., and Goossens, D.J. 2014. ‘Use of bond-valence sums in modelling the diffuse scattering from PZN (PbZn1/3Nb2/3O3)’. Acta Cryst. A70, pp. 626–635.

Williams, D.E. 1996. ‘Ab initio molecular packing analysis’. Acta Cryst. A52, pp. 326–328.

Withers, R.L., Schmid, S., and Thompson, J.G. 1998. ‘Compositionally and/or displacively flexible systems and their underlying crystal chemistry’. Prog. Solid State Chem. 26, pp. 1–96.

Woodley, S.M., Battle, P.D., Gale, J.D., and Catlow, C.R.A. 1999. ‘The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation’. Phys. Chem. Chem. Phys. 1, pp. 2535–2542.

Woodward, P. 1997a. ‘Octahedral tilting in perovskites I. Geometrical considerations’. Acta Cryst. B53, pp. 32–43.

Woodward, P. 1997b. ‘Octahedral tilting in perovskites II. Structure stabilizing forces’. Acta Cryst. B53, pp. 44–66.

Woodward, P.M., Cox, D.E., Mashopoulou, E., Sleight, A.W., and Morimoto, S. 2000. ‘Structural studies of charge disproportionation and magnetic order in CaFeO3’. Phys. Rev. B, 62, pp. 844–855.

Wright, S.E., Foley, F.A., and Hughes, J.M. 2000. ‘Optimization of site occupancies in minerals using quadratic programming’. Amer. Miner. 85, pp. 524–531.

Wu, Z., and Farges, F. 1999. ‘Anharmonicity around Th in crystalline oxide-type compounds: an in-situ high temperature XAFS spectroscopy study to 1500°C’. Physica B 266, pp. 282–289.

Wunder, B., Meixner, A., Romer, R.L., and Jahn, S. 2011. ‘Li-isotope fractionation between silicates and fluids: Pressure dependence and influence of the bonding environments’. Eur. J. Mineral. 23, pp. 333–342.

Xia, K., Bleam, W., and Helmke, P.A. 1997a. ‘Studies of the nature of Cu2+ and Pb2+ binding sites in soil humic substances using X-ray absorption spectroscopy’. Geochim. Cosmochim. Acta 61, pp. 2211–2221.

Xia, K., Bleam, W., and Helmke, P.A. 1997b. ‘Studies of the nature of binding sites of first row transition elements bound to aquatic and soil humic substances using X-ray absorption spectroscopy’. Geochim. Cosmochim. Acta 61, pp. 2223–2235.

Xiang, S., Short, S.A., Wolfenden, R., and Carter, C.W. 1996. ‘Cytidene deaminase complexed to 3-deazacytidine: A “valence buffer” in zinc enzyme catalysis’. Biochem. 35, pp. 1335–1341.

(p.309) (p.310) Yamada, I., Etani, H., Tsuchida, K., Marukawa, S., Hayashi, N., Kawakami, T., Mizumaki, M., Ohgushi, K., Kusano, Y., Kim, J., Tsuji, N., Takahashi, R., Nishiyama, N., Inoue, T., Irifune, T., and Takano, M. 2013. ‘Control of bond-strain-induced electronic phase transitions in iron perovskites’. Inorg. Chem. 52, pp. 13751−13761, dx.doi.org/10.1021/ic402344m.

Yan, Y., Chisholm, M.F., Duscher, G., and Pennycook, S.J. 1998. ‘Atomic structure of a Ca-doped [001] tilt grain boundary in MgO’. J. Electron Microscopy 47, pp. 115–120.

Zachara, J. 2007. ‘Novel approach to the concept of bond–valence vectors’. Inorg. Chem. 46, pp. 9760–9767.

Zachariasen, W.H. 1954. ‘Crystal chemical studies of the 5f series elements. XXIII On the crystal chemistry of uranyl compounds and of related compounds of transuranic elements’. Acta Cryst. 7, pp. 795–799.

Zhang, H., Li, N., Li, K., and Xue, D. 2007. ‘Structural stability and formability of ABO3-type perovskite compounds’. Acta Cryst. B63, pp. 812–818.

Zuo, J.M., Kim, M., O’Keeffe, M., and Spence J.C.H. 1999. ‘Direct observation of d-orbital holes and Cu-Cu bonding in Cu2O’. Nature 401, pp. 49–52.

Zhao, J., Ross, N.L., Angel, R.J. 2004. ‘New view of the high-pressure behaviour of GdFeO3-type perovskites’. Acta Cryst. B60, pp. 263–271.

Zhao, J., Ross, N.L., and Angel, R.J. 2006. ‘Estimation of polyhedral compressibilities and structural evolution of GdFeO3-type perovskites at high pressures’. Acta Cryst. B62, pp. 431–439.

Zheng, H., Chordia, M.D., Cooper, D.R., Chruszcz, M., Müller, P., Sheldrick, G.M., and Minor, W. 2014. ‘Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server’. Nature Protocols 9, pp. 156–170. doi:10.1038/nprot.2013.172.

Zhuang, N., Chen, W., Shi, L., Nie, J., Hu, X., Zhao, B., Lina, S., and Chena, J. 2013. ‘A new technique to grow incongruent melting Ga: YIG crystals: the edge-defined film-fed growth method’. J. Appl. Cryst. 46, pp. 746–751.

Ziółkowski, J. 1983a. ‘Catalytic properties of defective brannerite-type vanadates. II. A model of sites active in oxidation of propylene on the (201) and (202) planes of Mn1−xΦ‎xV2−2xMn2xO6’. J. Catal. 81, pp. 311–327.

Ziółkowski, J. 1983b. ‘Advanced bond strength model of active sites on oxide catalysts’. J. Catal. 84, pp. 317–332.

Ziółkowski, J. 1985. ‘New relation between ionic radii, bond length, and bond strength’. J. Solid State Chem. 57, pp. 269–290.

Ziółkowski, J. 1986. ‘Crystallochemical model of active sites on oxide catalysts’. J. Catal. 100, pp. 45–58.

Ziółkowski, J. 1988. ‘New method of calculation of surface enthalpy of solids’. Surface Sci. 209, pp. 536–61.

Ziółkowski, J., and Wiltowski, T. 1984. ‘Interaction of acetone with MoO3’. J. Catal. 90, pp. 329–336.

Ziółkowski, J., and Dzienbaj, L. 1985. ‘Empirical relationships between individual cation oxygen bond length and bond-energy in crystals and molecules’. J. Solid State Chem. 57, pp. 291–299.